Further Pure 1 Past Paper Questions Pack A: Mark Scheme

Taken from MAP1, MAP2, MAP3, MAP4, MAP6

Parabolas, Ellipses and Hyperbolas

Pure 3 June 2002

3 (a)	$x=2 \quad y= \pm \frac{5 \sqrt{ } 5}{3}= \pm 3.73$	M1A1	2	allow ± 3.7, or any correct numerical form

Rational Functions and Asymptotes

Pure 2 June 2001

Q	Solution	Marks	Total	Comments
5 (a)	 Solve $\frac{2 x-1}{x+1}=5$ $\Rightarrow x<-2$ and $x>-1$ from graph	B1 B1 B1 B1 M1A1 A1 B1 $\sqrt{ }$	4	Asymptote at $x=-1$ Asymptote at $y=2$ $x=\frac{1}{2} \text { and } y=-1$ Generally correct: award if $y=2$ missing but reasonable rectangular hyperbola ft on 'reasonable' graph
	Total		8	

Pure 2 June 2002

| 3 | | B1
 B1
 B1 | | Discontinuity at $x=2$
 y values $\rightarrow 1$ as $x \rightarrow \pm \infty$
 Through $(0,0)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B1 | | Fully correct
 Condone omission of 1 and 2 on graph | | |
| $x=2$ and $y=1$ | B1 | (5) | Both correct. Accept if labelled on the
 graph | |

Pure 2 June 2003

Q	Solution	Marks	Total	Comments
$7 \quad$ (a)	$x + 2 \longdiv { 2 x + 1 }$	M1		Any valid method attempted
	$\frac{2 x+4}{-3}$	A1		for 2
	$\therefore \frac{2 x+1}{x+2}=2-\frac{3}{x+2}$	A1F	3	for -3
(b)	$y_{1} \quad y$	B1		One asymptote; $\mathrm{ft} y=A$
		B1		Other asymptote
	2	B1		Full general shape
		B1	4	Intersections with both axes labelled (i.e. $\left[0, \frac{1}{2}\right]$ and $\left[-\frac{1}{2}, 0\right]$)
	-2 O x 			

Complex Numbers / Roots of Quadratic Equations

Pure 4 June 2004

Q	Solution	Marks	Total	Comments
1(a)	$(3-i)^{2}=9-6 i+i^{2}=8-6 i$	B1	1	
(b)(i)	$a(8-6 \mathrm{i})+b(3-\mathrm{i})+10 \mathrm{i}=0$	M1		Substituting 3-i into quadratic.
	Equating R \& I parts	M1A1		
	$8 a+3 b=0$			
	$-6 a-b+10=0$			
	Attempt to solve	M1		
	$a=3, \quad b=-8$	A1A1F	6	$\begin{aligned} & a=3 \text { is } \mathrm{AG} \\ & \text { If } a=3 \text { is assumed, allow M1A1 for } b \end{aligned}$
(ii)	$\text { Sum of roots }=-\frac{b}{a}$	M1		If sum of roots is -8 give M0
	$\text { or product }=\frac{c}{a}$			
	$\beta=-\frac{1}{3}+\mathrm{i}$	A1A1F	3	$\mathrm{A} 1 \text { for }-\frac{1}{3}, \mathrm{~A} 1 \text { for }+\mathrm{i}$
	Total		10	

Pure 2 June 2001

2	$\alpha+\beta=5, \quad \alpha \beta=3$ seen or \Rightarrow New sum and product: $\begin{array}{rr} \alpha+\beta+2 & (\alpha+1)(\beta+1) \\ =7 & =9 \end{array}$ leading to $x^{2}-7 x+9=0$	M1 M1 Al $\sqrt{ }$ A1 $\sqrt{ }$	4	Ignore sign on sum Alternatives: 1. $x \mapsto x-1 \quad$ M1 sub M1A1 result A1 2. Finding roots M1A1 sub new roots M1 CAO A1
	Total		4	

Pure 2 June 2003

2(a)	$\alpha \beta=2$	B1	1	
(b)(i)	$\alpha+\beta=-p$	B1	1	
(ii)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$			
$=p^{2}-4$	AlF seen anywhere			
(c)	$p^{2}-4=5 \Rightarrow p= \pm 3$		AlF	1
		correct use of $(\alpha+\beta)^{2}-2 \alpha \beta$		

Pure 2 Jan 2004

Numerical Methods

Pure 1 June 2001

3 a Reasonable sketch of \cos
One pt of int \Rightarrow one root
b Use of $\tan =\sin / \cos$
$\mathrm{f}(\alpha)=0$
c $\quad f(0.8) \approx-0.22036 \approx-0.220$
$f(0.9) \approx 0.14905 \approx 0.149$
d Complete linear interpolation $\alpha \approx 0.86$

B1 OE sketches
 E1 2 AG

M1
A1 2 or $\mathrm{f}(x)=0$; convincingly shown (AG)
B1 AG: more DP shown or $f(0.9)$ correct
B1 2 Allow AWRT 0.149
M1
Al 2 Allow AWRT 0.86

Pure 1 Jan 2002

$\mathbf{5}$ (a)(i)	$\mathrm{f}(1) \approx-0.443, \mathrm{f}(1.2) \approx 0.172$ Change of sign, hence root between (ii)	B 1 $\mathrm{f}(1.1) \approx-0.235, \mathrm{f}(1.15) \approx-0.0655$ Root between 1.15 and 1.2	M 1		
M 1				$\quad 2$	numerical values needed, to at least 1DP
:---					
sign change OE must be mentioned					
both attempted, not necessarily					
accurately					
answer must be an interval, not a single					
value					

Pure 1 June 2002

Q	Solution	Marks	Total	Comments
1 (a)	Calculation of $f(1.2)$ and $f(1.3)$	M1		where $\mathrm{f}(x)=x^{4}-(5-2 x)$, OE
	$\mathrm{f}(1.2) \approx-0.53, \mathrm{f}(1.3) \approx 0.46$	A1		OE; accept 1 DP
	Clear justification of result	E1	3	AG: must mention sign change OE
(b)	$f(1.25) \approx-0.06$	B1		OE; accept -0.1
	Root nearer to 1.3	B1F	2	ft wrong value
	Total		5	

Pure 1 Jan 2003

2 (a)	$x^{3}=x+1 \Rightarrow x^{3}-x-1=0$	B1	1	Convincingly shown (AG)
(b)(i)	$f(1.2)=-0.472, f(1.4)=0.344$	B1B1		OE; Numerical values needed
	Sign change implies root between	E1	3	Sign change OE must be mentioned
(ii)	Attempt at $\mathrm{f}(1.3)(=-0.103)$	M1		
	Root between 1.3 and 1.4	A1		
	$f(1.35)=0.110375$, so root between 1.3 and 1.35	M1	3	Allow good attempt leading to values differing by 0.05
(iii)	$\alpha \approx 1.3$	A1	1	
	Total		8	

| 7 (a) $\|y\|$ | | Graph $\ln x$
 Graph $\frac{3}{x}$ | B1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B1 | | | |

Pure 2 June 2003

Pure 2 Jan 2004

Pure 3 June 2001

5	$\begin{aligned} & x \\ & \hline 0 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & y \\ & \hline 3 \\ & 4.5 \\ & 5.979 \\ & \\ & 5.98 \end{aligned}$	$\begin{aligned} & \text { step } x \\ & \hline 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x} \\ & 3 \\ & 2.958 \end{aligned}$	step y $\frac{1.5}{1.479}$	$\begin{aligned} & \text { M1A1 } \\ & \text { M1A1 } \end{aligned}$ Al	5	M1 use $\partial y=\frac{\mathrm{d} y}{\mathrm{~d} x} \partial x$ accept $y=1.48$ CAO
					Total		5	

Pure 3 Jan 2002

$\mathbf{3}$ (a)	x	y	$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	$\mathrm{~d} x$	$\mathrm{~d} y$			
		-2	1	-0.5	0.5	-0.25	M1A1	
		-1.5	0.75	-0.333	0.5	-0.167	M1	
		-1	0.583					
				A1	4			
	(b)	Reduce the step size		B1	1	CAO		
		Total		$\mathbf{5}$				

Pure 3 Jan 2003

Q	Solution					Marks	Total	Comments
4	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{x^{2}-5}$							Clarification of marks:
	x	y	$\frac{\mathrm{d} y}{\mathrm{~d} x}$		dy	M1		M1 calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}$; use result
	3	1	2	0.5	1	A1		$\times 0.5=\mathrm{d} y$
	3.5	2	2.69	0.5	1.346	M1		$\mathrm{A} 1 \quad \mathrm{~d} y=1$
		3.346				A1		M1 $y \rightarrow y+\mathrm{d} y ; x \rightarrow x+\mathrm{d} x$; calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}$; use result $\times 0.5=\mathrm{d} y$
	3.35					A1	5	A1 $y=2 \quad \mathrm{~d} y=1.346$ (allow 1.35) A1 $y=3.35 \quad \mathrm{CAO}$
							5	

Pure 3 June 2003

Q	Solution					Marks	Total	Comments
6(a)	t	x	$\frac{\mathrm{d} x}{\mathrm{~d} t}$		d x			
	0	1	1.8	0.3	0.54	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Allow M1A1 with $\mathrm{d} x=0.3\left\{\begin{array}{l}\mathrm{d} t=0.54 \\ \frac{\mathrm{~d} x}{\mathrm{~d}}=1.8\end{array}\right.$
	0.3	1.54	1.692	0.3	0.5076	M1		(but $2 / 4 \mathrm{max}$) $\frac{\mathrm{d} t}{}$
	0.6	2.0476				A1	4	AWRT 2.05

Pure 3 Jan 2004

Matrix Transformations

Pure 6 Jan 2002

Pure 6 Jan 2003

Q	Solution	Marks	Total	Comments
1 (a)	$\left[\begin{array}{cc} \cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta) \end{array}\right]=\left[\begin{array}{rr} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]$	M1A1	2	
(b)	$\left[\begin{array}{ll} 1 & * \\ 2 & * \end{array}\right]$	B1		
	$\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]$	M1A1	3	
	Total		5	

Pure 6 June 2003

2 (a) (b)	\mathbf{M} is $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or where $\sin \theta=\frac{\sqrt{3}}{2}, \cos \theta=\frac{1}{2}$ $\therefore \mathrm{M}$ represents a rotation anticlockwise about O of $\frac{1}{3} \pi$ $6 \times \frac{\pi}{3}=2 \pi \quad \therefore \mathbf{M}^{6}=\mathbf{I}$	B1 B1 B1 M1A1	3 2	Explain and justify $\frac{\pi}{3}$ condone 60° (if stated about the x-axis B0)
	Total		5	

