Further Pure 1 Past Paper Questions Pack A: Mark Scheme

Taken from MAP1, MAP2, MAP3, MAP4, MAP6

Parabolas, Ellipses and Hyperbolas

Pure 3 June 2002

- 1					1
	3 (a)	$x = 2$ $y = \pm 5\sqrt{5} = \pm 3.73$	M1A1	2	allow ± 3.7 , or any correct
		3			numerical form

Rational Functions and Asymptotes

Pure 2 June 2001

uic Z							
Q	Solution	Marks	Total	Comments			
5 (a)	-5	B1 B1 B1	4	Asymptote at $x = -1$ Asymptote at $y = 2$ $x = \frac{1}{2}$ and $y = -1$ Generally correct: award if $y = 2$ missing but reasonable rectangular hyperbola			
(b)	Solve $\frac{2x-1}{x+1} = 5$ $\Rightarrow x < -2$ and $x > -1$ from graph	M1A1 A1 B1√	4	ft on 'reasonable' graph			
	Total		8				

Pure 2 June 2002

Pure 2 June 2003					
Q	Solution	Marks	Total	Comments	
7 (a)	(x+2)2x+1	M1		Any valid method attempted	
	$\frac{2x+4}{-3}$	A1		for 2	
	$\therefore \frac{2x+1}{x+2} = 2 - \frac{3}{x+2}$	A1F	3	for -3	
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 B1	4	One asymptote; ft $y = A$ Other asymptote Full general shape Intersections with both axes labelled (i.e. $\left[0, \frac{1}{2}\right]$ and $\left[-\frac{1}{2}, 0\right]$)	

Complex Numbers / Roots of Quadratic Equations

Pure 4 June 2004

Q	Solution	Marks	Total	Comments
		B1	1	Comments
(b)(i)	$(3-i)^2 = 9-6i+i^2 = 8-6i$ $a(8-6i)+b(3-i)+10i = 0$	M1		Substituting 3 – i into quadratic.
	Equating R & I parts	M1A1		
	8a + 3b = 0			
	-6a - b + 10 = 0			
	Attempt to solve	M1		
	a=3, $b=-8$	A1A1F	6	a = 3 is AG If $a = 3$ is assumed, allow M1A1 for b
(ii)	Sum of roots $=-\frac{b}{a}$	M1		If sum of roots is – 8 give M0
	or product = $\frac{c}{a}$			
	$\beta = -\frac{1}{3} + i$	A1A1F	3	A1 for $-\frac{1}{3}$, A1 for $+i$
	Total		10	

Pure 2 June 2001

	J 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
2	$\alpha + \beta = 5$, $\alpha\beta = 3$ seen or \Rightarrow New sum and product: $\alpha + \beta + 2$ $(\alpha + 1)(\beta + 1)$ = 7 $= 9$	M1 M1 A1√		Ignore sign on sum Alternatives: 1. $x \mapsto x-1$ M1 sub M1A1
	leading to $x^2 - 7x + 9 = 0$	A1√	4	result A1 2. Finding roots M1A1 sub new roots M1 CAO A1
	Total		4	

Pure 2 June 2003

2(a)	$\alpha\beta = 2$	B1	1	7
(b)(i)	$\alpha + \beta = -p$	B1	1	if seen anywhere
(ii)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1		correct use of $(\alpha + \beta)^2 - 2\alpha\beta$
	$=p^2-4$	A1F	2	ft from their $(\alpha + \beta)$ and $\alpha\beta$
(c)	$p^2 - 4 = 5 \implies p = \pm 3$	A1F	1	No ft from $\alpha^2 + \beta^2 = (\alpha + \beta)^2$
	Total		5	

Pure 2	Pure 2 Jan 2004					
Q	Solution	Marks	Total	Comments		
1 (a)(i)	$\alpha\beta = \frac{1}{2}$	B1				
(ii)	$\alpha + \beta = 3$	В1	2			
(b)(i)	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \beta} = 2$	B1√	1			
(ii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = 6$	M1A1√	2			
(c)	$x^{2} - (sum)x + (product) = 0$ $x^{2} - 6x + 2 = 0$	M1 A1√	2	Replace x by $\frac{1}{x}$ $2\left(\frac{1}{x}\right)^2 - 6\left(\frac{1}{x}\right) + 1 = 0$ $\frac{2}{x^2} - \frac{6}{x} + 1 = 0 \times \text{by } x^2 \text{ to give}$ $x^2 - 6x + 2 = 0$		
	Total		7			

Numerical Methods

Pure 1 June 2001

3 a	Reasonable sketch of cos One pt of int ⇒ one root	B1 E1 2	OE sketches AG
b	Use of $\tan = \sin/\cos f(\alpha) = 0$	M1 A1 2	or $f(x) = 0$; convincingly shown (AG)
c	$f(0.8) \approx -0.22036 \approx -0.220$ $f(0.9) \approx 0.14905 \approx 0.149$	B1 B1 2	AG: more DP shown or f(0.9) correct Allow AWRT 0.149
đ	Complete linear interpolation $\alpha \approx 0.86$	M1 A1 2	using neg and pos values from (c) Allow AWRT 0.86

Pure 1 Jan 2002

5 (a)(i)	$f(1) \approx -0.443, f(1.2) \approx 0.172$	B1		numerical values needed, to at least 1DP
	Change of sign, hence root between	E1	2	sign change OE must be mentioned
(ii)	$f(1.1) \approx -0.235, f(1.15) \approx -0.0655$	M1		both attempted, not necessarily
	Root between 1.15 and 1.2	A1	2	accurately
				answer must be an interval, not a single
				value

Pure 1 June 2002

	Q	Solution	Marks	Total	Comments
1	(a)	Calculation of $f(1.2)$ and $f(1.3)$	M1		where $f(x) = x^4 - (5 - 2x)$, OE
		$f(1.2) \approx -0.53, \ f(1.3) \approx 0.46$	A1		OE; accept 1 DP
		Clear justification of result	E1	3	AG: must mention sign change OE
	(b)	$f(1.25) \approx -0.06$	B1		OE; accept –0.1
		Root nearer to 1.3	B1F	2	ft wrong value
		Total		5	

Pure 1 Jan 2003

uici	uic i dan 2005					
2 (a)	$x^3 = x + 1 \Rightarrow x^3 - x - 1 = 0$	B1	1	Convincingly shown (AG)		
(b)(i)	f(1.2) = -0.472, f(1.4) = 0.344	B1B1		OE; Numerical values needed		
	Sign change implies root between	E1	3	Sign change OE must be mentioned		
(ii)	Attempt at $f(1.3) (= -0.103)$	M1				
	Root between 1.3 and 1.4	A1		PI		
	f(1.35) = 0.110375, so root between 1.3 and 1.35	M1	3	Allow good attempt leading to values differing by 0.05		
(iii)	$\alpha \approx 1.3$	A1	1			
	Total		8			

Pure 2 June 2001

	Julie 2001			
7 (a)	Graph $\ln x$ Graph $\frac{3}{x}$	B1 B1	2	
(b)(i)	$\begin{cases} f(3) > 0 \\ f(2) < 0 \end{cases} \Rightarrow \text{root in } 2 < x < 3$	M1A1	2	
(ii)	$f'(x) = \frac{1}{x} + \frac{3}{x^2}$	В1		
	Use of Newton-Raphson formula	M1A1√		
	$x_1 = 2.82$	A1	4	AWRT (3 s.f) is OK
	Total		8	

Pure 2 June 2003

Q	Solution Solution	Marks	Total	Comments
4 (a)	Let $f(x) = 2\cos x - \frac{1}{x}$	1,1111	10.00	
	f(0.6) = -0.016	M1		use of calculator in radian mode
	f(0.7) = 0.101	A1		
	Change of sign indicates a root of			
	f(x) = 0 between 0.6 and 0.7	E1	3	
(b)	$f'(x) = -2\sin x + \frac{1}{x^2}$	M1		attempt at differentiation
		A1		CAO
	$x_2 = 0.6 - \frac{f(0.6)}{f'(0.6)}$	M1		Use of Newton-Raphson
	$=0.6 - \frac{-0.0160}{1.6485}$	m1		f(0.6) correct and their $f'(0.6)$ attempted
	≈ 0.610	A1F	5	ft on their $f'(x)$
	Total		8	

Q	Solution	Marks	Total	Comments
6 (a)	f(1) = 0.341 f(2) = -0.091	M1		
	Change of sign \Rightarrow \therefore root in the interval $1 \le x \le 2$	A1	2	
(b)(i)	$f'(x) = \cos x - \frac{1}{2}$	B1	1	
(ii)	$x_{n+1} = x_n - \frac{f(x)}{f'(x_n)} = x_n - \frac{\sin x_n - \frac{1}{2}x_n}{\cos x_n - \frac{1}{2}}$	M1		N-R formula used
	$x_0 = 2$ \therefore $x_1 = 2 - \frac{\sin 2 - 1}{\cos 2 - \frac{1}{2}}$	m1		Radians used in correct formula
	$x_1 = 1.901 \approx 1.9$	A1	3	AG

	5	0 0.5 1.0	y 3 4.5 5.979 5.98	step <i>x</i> 0.5 0.5	$\frac{dy}{dx}$ 3 2.958	1.5 1.479	M1A1 M1A1	5	M1 use $\partial y = \frac{dy}{dx} \partial x$ accept $y = 1.48$
						Total		5	
_	ure 3	Jan 2	2002 <i>y</i>	$\frac{\mathrm{d}y}{\mathrm{d}x}$	dx	dy			

	, ,	dx		/					
	- 2 1		0.5	- 0.25	M1A1				
	-1.5 0.75	- 0.333	0.5	- 0.167	M1				
	-1 0.583								
	0.58				A1	4			
(b)	Reduce the st	ep size			B1	1	CAO		
Total 5									

Q			Soluti	on		Marks	Total	Comments
4	<i>x</i> 3	$ \sqrt{x^2 - 5} $ $ y $ $ 1 $ $ 2 $ $ 3.346 $	$\frac{dy}{dx}$ 2 2.69	dx 0.5 0.5	dy 1 1.346	M1 A1 M1 A1	5	Clarification of marks: M1 calculate $\frac{dy}{dx}$; use result ×0.5 = dy A1 dy = 1 M1 $y \rightarrow y + dy$; $x \rightarrow x + dx$; calculate $\frac{dy}{dx}$; use result ×0.5 = dy A1 $y = 2$ dy = 1.346 (allow 1.35) A1 $y = 3.35$ CAO
					Total		5	

Pure 3 June 2003

ſ	ure 3	Jun	e žuus						
	Q			Solution			Marks	Total	Comments
	6(a)	t	х	$\frac{\mathrm{d}x}{\mathrm{d}t}$	d <i>t</i>	dx			
		0	1	1.8	0.3	0.54	M1 A1		Allow M1A1 with $dx = 0.3$ $\begin{cases} dt = 0.54 \\ \frac{dx}{dt} = 1.8 \end{cases}$
		0.3	1.54	1.692	0.3	0.5076	M1		(but 2 / 4 max)
		0.6	2.0476				A1	4	AWRT 2.05

Pure 3 Jan 2004

2	x	у	step x	$\frac{\mathrm{d}y}{\mathrm{d}x}$	step y			$\frac{\mathrm{d}y}{\mathrm{d}x} = 0.5$ M1	
	1 1.25 1.5	0.5 0.625 0.7096		0.5 0.3386	0.125 0.0846	M1A1 M1A1		Step dy = 0.125 A1 1.25; step y + 0.5; step y = $0.25 \frac{dy}{dx}$ M1	
			x = 0	.71		A1	5	0.08 (46) AWRT A1	
					Total		5		

Matrix Transformations

Pure 6 Jan 2002

Q	Solution	Marks	Total	Comments
4 (a)	Rotation, $\frac{\pi}{6}$, anticlockwise	B1B1B1	3	
(b)	$\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$	В3	3	B2 if 2 correct
(c)(i)	$\mathbf{M}_1 \mathbf{M}_2$ considered	M1		
	$\begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$	A1	2	
(ii)	Reflection	B1		
	Line at 75° to x - axis	B2	3	
	Total		11	

Pure 6 Jan 2003

1	Q	Solution	Marks	Total	Comments
	1 (a)	$\begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$	M1A1	2	
	(b)	$\begin{bmatrix} 1 & * \\ 2 & * \end{bmatrix}$	B1		
		$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$	M1A1	3	
Ī		Total		5	
Ŧ					

Pure 6 June 2003

2 (a) \mathbf{M} is $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ or $\mathbf{B}1$ Explain and justify $\frac{\pi}{3}$ where $\sin \theta = \frac{\sqrt{3}}{2}$, $\cos \theta = \frac{1}{2}$ \therefore \mathbf{M} represents a rotation anticlockwise about O $\mathbf{B}1$ of $\frac{1}{3}\pi$ $\mathbf{B}1$ 3 condone 60° (if stated about the <i>x</i> -axis $\mathbf{B}0$)		1			
where $\sin \theta = \frac{\sqrt{3}}{2}$, $\cos \theta = \frac{1}{2}$ $\therefore \mathbf{M} \text{ represents}$ a rotation anticlockwise about O of $\frac{1}{3}\pi$ B1 3 condone 60° (if stated about the x-axis	2 (a)	$\mathbf{M} \text{ is } \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$			
∴ M represents a rotation anticlockwise about O B1 of $\frac{1}{3}\pi$ B1 3 condone 60° (if stated about the x-axis		or	В1		Explain and justify $\frac{\pi}{3}$
a rotation anticlockwise about O B1 of $\frac{1}{3}\pi$ B1 3 condone 60° (if stated about the x -axis		where $\sin \theta = \frac{\sqrt{3}}{2}$, $\cos \theta = \frac{1}{2}$			
of $\frac{1}{3}\pi$ B1 3 condone 60° (if stated about the x-axis		M represents			
		a rotation anticlockwise about O	B1		
		of $\frac{1}{3}\pi$	В1	3	condone 60° (if stated about the <i>x</i> -axis B0)
(b) $6 \times \frac{\pi}{3} = 2\pi$ $\therefore \mathbf{M}^6 = \mathbf{I}$ M1A1 2	(b)	$6 \times \frac{\pi}{3} = 2\pi \qquad \therefore \mathbf{M}^6 = \mathbf{I}$	M1A1	2	
Total 5		Total		5	